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Abstract—Predominant smartphone OS localization subsys-
tems currently rely on server-side localization processes, allowing
the service provider to know the location of a user at all times.
In this paper, we propose an innovative algorithm for protecting
users from location tracking by the localization service, without
hindering the provisioning of fine-grained location updates on
a continuous basis. Our proposed Temporal Vector Map (TVM)
algorithm, allows a user to accurately localize by exploiting a
k-Anonymity Bloom (kAB) filter and a bestNeighbors generator
of camouflaged localization requests, both of which are shown to
be resilient to a variety of privacy attacks. We have evaluated
our framework using a real prototype developed in Android
and Hadoop HBase as well as realistic Wi-Fi traces scaling-
up to several GBs. Our study reveals that TVM can offer fine-
grained localization in approximately four orders of magnitude
less energy and number of messages than competitive approaches.

I. INTRODUCTION

People spend 80-90% of their time in indoor environ-
ments1, including shopping malls, libraries, airports or uni-
versity campuses. The omni-present availability of sensor-
rich mobiles has boosted the interest for a variety of in-
door location-based services, such as, in-building guidance
and navigation, inventory management, marketing and elderly
support through Ambient and Assisted Living. To enable
such indoor applications in an energy-efficient manner and
without expensive additional hardware, modern smartphones
rely on Internet-Based Indoor Navigation (IIN) services [4],
which provide the accurate location (position) of a user upon
request. There are numerous IIN services, including Skyhook,
Google, Indoo.rs, Wifarer, Navizon, IndoorAtlas, ByteLight and
our open in-house Anyplace system2. These systems rely on
geolocation databases (DB) containing wireless, magnetic and
light signals, upon which users can localize.

Particularly, IIN geolocation DB entries act as reference
points for requested localization tasks. In summary, a smart-
phone can determine its location at a coarse granularity (i.e.,
km or hundreds of meters) up to a fine granularity (i.e., 1-
2 meters), by comparing against the reference points, either
on the service or on the smartphone itself. One fundamental
drawback of IIN services is that they receive information
about the location of a user while servicing them, generating
a variety of location privacy concerns (e.g., surveillance or
data for unsolicited advertising). These concerns do not exist
with the satellite-based Global Positioning System (GPS), used

1US Environmental Protection Agency, http://epa.gov/iaq/
2Available at: http://anyplace.cs.ucy.ac.cy/

in outdoor environments, as GPS performs the localization
directly on the phone with no location-sensitive information
downloaded from any type of service. Although in this work
we are mainly concerned with fine-grained Wi-Fi localization
scenarios in indoor spaces, our discussion is equally applicable
to other types of indoor fingerprints (e.g., magnetic, light,
sound) and outdoor scenarios (e.g., cellular).

Location tracking is unethical in many respects and can
even be illegal if it is carried out without the explicit consent
of a user. It can reveal the stores and products of interest in a
mall we’ve visited, doctors we saw at a hospital, book shelves
of interest in a library, artifacts observed in a museum and
generally anything else that might publicize our preferences,
beliefs and habits. Somebody might claim that telecoms and
governments are already tracking smartphone users outdoors,
on the premise of public and national safety3, thus there is
no need to care about indoor location privacy either. Clearly,
there is a lot of controversy on whether this is right or wrong,
which has to do with different cultural, religious, legal and
socio-economic dimensions.

We consider that IIN services are fundamentally untrusted
entities and, as such, develop hybrid techniques that on the
one hand exploit the IIN services utility, but on the other hand
also offer controllable location privacy to the user. Particularly,
we tackle the technical challenge of enabling a user u to
localize through an IIN service s, without allowing s to know
where u is. More formally, our desiderata is summarized by
the following goal.

Research Goal. Provide continuous localization to a mobile
user u that can measure the signal intensity of its surrounding
Access Points, with minimum energy consumption on u, such
that a static cloud-based server s cannot identify u’s location
with a probability higher than a user-defined preference pu.

II. THE TVM ALGORITHM

In [2], we devise the Temporal Vector Map (TVM) algo-
rithm4, which camouflages the location of some user u from
s, by requesting a subset of k entries from s, where k is a
user-defined constant. With the proposed method, s cannot
identify u’s location with a probability higher than a user-
defined preference pu.

To understand the operation of TVM, at a high level,
consider the illustration of Figure 1 (left). An arbitrary user

3Dec. 4, 2013: The Washington Post, http://goo.gl/0jJcrL
4Available at: http://tvm.cs.ucy.ac.cy/
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Fig. 1. (Left) Indoor localization of user u using the IIN service s. During the
localization, u requests k−1 camouflaged locations using the TVM algorithm,
such that s can know the location of u only with probability 1/k. (Right) Our
TVM prototype implemented in Android OS.

u moves inside building A, using the TVM smartphone appli-
cation shown in Figure 1 (right). While u requests reference
locations from s pertinent to building A, it also requests
reference locations related to arbitrary other buildings B and
C. Particularly, u uses a hashing scheme, whch ensures that for
a given user-preference k = 3, s will not be able to distinguish
u’s request from requests made by k− 1 arbitrary other users
u′ and u′′. Under reasonable assumptions about the scope of
IIN services, we show that s can know u’s location only within
pu, even while u is moving. Particularly, the TVM algorithm
operates in two phases outlined next.

In Phase 1 of TVM, u computes a k-Anonymity Bloom
(kAB) filter structure, which provides location privacy for
snapshot localization tasks using a bloom filter [1]. When u
needs continuous localization (e.g., as u moves), the kAB of
Phase 1 itself is not adequate to preserve the privacy of u, since
by issuing k independent requests, s can realize by exclusion
that there are k − 1 invalid requests (as one of the requests
will always relate to the real building A). This allows s to
deterministically derive u’s real location.

To circumvent the above problem, in Phase 2 of TVM, u
uses the bestNeighbors algorithm to issue a set of camouflaged
localization requests that follow a similar natural movement
pattern to that of u (i.e., dotted circles in Figure 1, left). This
provides the illusion to s that there are k other users moving
in space, thus camouflaging u among k other users. Since our
TVM algorithm transfers only a partial state of the database
from s to u, it requires less network traffic and smartphone-
side energy than current approaches that transfer the complete
database to u prior the localization task.

When it Works. We consider a service that is fundamentally
untrusted. As such, the service is operating in one of the
following modes: i) it is compromised by the adversary owner
of the service; or ii) it is compromised by some adversary third
party (e.g., hacker). In both cases, the adversary can operate in
the following two modes: i) an active attacker mode, in which
the adversary attempts to alter system resources or actively
combine background knowledge in order to infer where the
users are; and ii) a passive attacker mode, during which the
adversary attempts to learn from whatever data is available
on the system (e.g., log files, wiretapping network sockets,
etc.) without having additional information about the users.
The TVM algorithm presented in this work, is sound under
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Fig. 2. Performance Evaluation: snapshot (left) & continuous (right)
localization scenarios, respectively.

a passive attacker model, for which the following high-level
characteristics apply to s (as explained in [2]): i) No Low-
Level Attacks; ii) No Modified Responses; iii) No Access to
User Identifier; and iv) No Background Knowledge.

III. EXPERIMENTAL EVALUATION

We provide an extensive experimental evaluation with
four different realistic datasets on our SmartLab cluster [3]
comprising of over 40 real smartphones. We use four datasets:
Campus, Town, City and Country, which have a size of: ≈20
MBs, ≈100 MBs, ≈1 GB and ≈20 GBs, respectively. The
performance of our TVM approach is evaluated in terms of
energy (in Joules) consumed by the smartphone device during
the localization process. For measuring the performance of
consecutive localizations we have defined a fixed route for
each dataset, where a user localizes itself every 30 seconds for
a total of 300 consecutive localizations. In our experiments we
measure the cumulative cost of the whole route.

In our experiments we evaluate the performance and
scalability of our TVM approach with respect to the fol-
lowing two counterparts: i) Server-Side (SS) solutions (i.e.,
Cell ID, WiFi ID or Server-side RadioMap), which are
privacy-invasive, but consume minimal energy; and ii) Client-
Side (CS) solution offering optimal privacy guarantees, but
consuming the maximum possible energy.

For snapshot localization, Figure 2 shows that TVM per-
forms around one to four orders of magnitude better than
the CS approach as the dataset size increases. This is due
to the fact that CS downloads the whole RadioMap (RM )
and performs localization on the smartphone. Furthermore, the
energy cost of TVM is not constant for all datasets, due the fact
that larger datasets have a higher number M of access points,
and therefore the required energy cost per message slightly
increases. Similar results also apply to continuous localization.
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